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ON THE SECONDARY INSTABILITY OF THE MOST
DANGEROUS GORTLER VORTEX.

S. R. Otto' and James P. Denier'

'ICASE, NASA Langley Research Center, VA 23681-0001, USA

2 University of New South Wales, Kensington, NSW 2033. Australia

ABSTRACT

Recent studies have demonstrated the most unstable G6rtler vortex mode is found
in flows, both two and three-dimensional, with regions of (moderately) large body
curvature and these modes reside within a thin layer situated at the base of the con-
ventional boundary layer. Further work concerning the nonlinear development of the
most dangerous mode demonstrates that the flow results in a self induced flow re-
versal. However, prior to the point at which flow reversal is encountered the total
streamwise velocity profile is found to be highly inflectional in nature. Previous work
then suggests that the nonlinear vortex state will become unstable to secondary, in-
viscid, Rayleigh wave instabilities prior to the point of flow reversal. Our concern is
with the secondary instability of the nonlinear vortex states, whch result from the
streamwise evolution of the most unstable G6rtler vortex mode, with the aim of deter-
mining whether such modes can induce a transition to a fully turbulent state before

separation is encountered.
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1. Introduction

The most dangerous G6rtler vortex mode has recently been identified by Denier et

al (1991) (see also Timoshin (1990)). This mode is found to have a streamwise growth

rate of O(G3 /5 ) and is localized in a thin, O(G-1/5 ), viscous layer located at the solid

boundary. The effect of crossflow onl this mode has been demonstrated by Bassoli &

Hall (1991) to have a stabilizing effect. The nonlinear evolution of the most dangerous

mode has been considered in a series of articles; for two dimensional flows b:y Denier &

Hall (1993) and for three dimensional flows by Otto & Bassom (1993). In both cases

the vortex induced mean flow results in a region of reversed flow at some finite distance

downstream of the position at which the perturbation is first introduced. However,

prior to such a flow reversal the total streamwise velocity fields are seen to be strongly

inflectional in nature and thus we anticipate that such flows will be highly susceptible

to secondary inviscid instabilities in the form of Rayleigh waves.

In the case of order one wavenumber/G~rtler number regime Hall & Horseman

(1991) found that the highly inflectional velocity profiles found in Hall (1988) are

unstable to inviscid Rayleigh instabilities and demonstrated good agreement with the

experimental results of Swearingen & Blackwelder (1987).

In the situation under consideration the equation governing the perturbation

quantities is the three-dimensional Rayleigh pressure equation obtained by Hall &=

Horseman (1991). We obtain solutions of this boundary value problem in order to

ascertain the temporal stability of a given vortex flow profile. Since the presence of

the vortex implies that the underlying basic state has a periodic spanwise structure,

we elect to retain the spanwise variation by only assuming that the periodicity of the

secondary modes are the same as the that of the vortices. In fact we find that the

most unstable modes are comprised of significant contributions from the mean, fun-

damental and second harmonic components. Similar observations havc been made by

Balachandar, Streett & Malik (1992), in their work concerning the secondary insta-

bility of rotating disk flows. Somewhat surprisingly this procedure does not generate

any odd modes, those which are ir/2 out-of-phase with the underlying vortex state,

of the form found by Hall & Horseman (1991). However, by explicitly apply spanwise

boundary conditions applicable to the odd modes additional unstable modes Canl read-

ily be obtained but which have smaller growth rates than the those labeled secondary

in Figure 1, (see Otto & Denier (1993) for further details).

The remainder of this article is structured as follows: ;i section 2 we shall sum-

marize the derivation of the equations governing the nonlinear vortex state, and derive
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the inviscid Rayleigh pressure equation. In section 3 some brief coininenits will be iiiade

concerning the numerical methods used to solve the Rayleigh equation, and in section

4 we shall comment on our findings and discuss p)ossible future topics of interest, and

finally in section 5 we shall draw some conclusions.

2. Governing equations

In this article we consider a boundary layer flowing over a yawed cylinder, thifs

flow has been previously considered in Hall (1985) and the reader is referred to that

paper for details. The Reynolds number Re and Gortler numlber G are defined by

ULR, G = 2R,2 6,

where U is a typical flow velocity in the streaniwise direction, L is a characteristic

streamwise lengthscale and v is the kinematic viscosity of the fluid. The curvature of

the cylinder is taken to be !X0 (-f) where the function Xo is supposed to be smooth

and positive. With these definitions 6 - L/b where b is a typical radius of curvature

of the cylinder. The Reynolds number is taken to be large whilst 6 is sufficiently small

so that as 6 -- 0 the parameter G is fixed and is of order one (when compared to

tb'ý Reynolds number). We will subsequently consider the large G6rtler number limit

relevant to the most dangerous G6rtler vortex mode.

The nonlinear evolution of the most dangerous Ggrtler mode occurs over an

(G-a/5 ) spatial lengthscale, (where now we are assuming G >> I), and is confined to

an O(G-''/5 ) viscous layer located at the solid boundary. With the effect of crossflow

of order O(R- GG) the modes evolve over an O(G- ) temporal scale. The resulting

equations governing the nonlinear evolution of the most dangerous G6rtler mode are

given in Otto & Bassom (1993) (also Demier & Hall (1993), Timoshin (1990)). For the

sake of brevity the reader is referred to the aforementioned papers for full details.

Here we make a few brief remarks concerning the results of the previous calcu-

lations of the nonlinear evolution of the most unstable G6rtler mode. The work of

Denier & Hall (1993) demonstrates that the evolution of this mode results ill a self

induced flow reversal at some finite distance downstream of the position at which a

disturbance is first introduced into the boundary layer. This result was independently

confirmed by Otto & Bassom (1993) in their work on the effect of crossftoiv on the

nonlinear evolution of the most dangerous Gdrtler mode. However, in both cases, it
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was demonstrated that the total flow field becomes highly inflectional in nature prior

to the point at which flow reversal is found.

To consider the secondary instability of such highly inflectional profiles we consider

perturbations to the total velocity field in the form of inviscid Rayleigh waves. Th•e

spatial and temporal scales of these modes are on the same order as the viscous wall

sublayer in which the nonlinear vortex resides, namely O(G•'/•Re-' 1 2 ). WVe consider

perturbations to the nonlinear vortex state of the form

A (GI U,GV.Gf',,) eiWP) '/Rel/2(z-ct)

where a is the streamnwise wave number and c is the complex wave speed; here

U, V', W, P are fulictions of the scaled variables y and z and A is the small per-

turbation parameter. The equation governing the perturbation quantities are most

easily written by eliminating U, V, W to give the three-dimensional Rayleigh pressure

equation

,2P 02 2j> 2 = 0. (2.1)5y-2 + z-5-'Z - f-c "7y -jy- +" -jz-j

We impose the usual inviscid boundary conditions, namely vanishing normal velocity

at the solid boundary together with the requirement that the perturbation decays as we

leave the viscous wall layer. In terms of the pressure perturbation these requirements

become a?
-- =0 at y=0, P--0 as y--+o. (2.2)
ay

We also impose the condition that the wave has the same spanwise period as the

underlying nonlinear vortex state, hence

P(z) = P(z + 27r), (2.3)

where k is the spanwise wavenumber of the vortex velocity field. The form of F1 is

given by the total streamwise velocity from the vortex calculation, anld is

i(x, y, z) = y + U(x, y, z), (2.4)

with i(z) = fi(z + 27r); the term y in relation (2.4) is the basic shear in the viscous

wall layer and U is the vortex induced flow. This system now represents an eigenvalue

problem which can be solved for a given a to determine a complex phase speed c and

thus determine the inviscid temporal instability of the flow at a given streamwins, x

location.
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3. Numerical techniques

In this section we describe the techniques used to solve the elliptic equation (2.1).

We discretize the system using a five-point regular spanwise stencil and a stretched1

three point stencil in the normal coordinate. As the Rayleigh waves art- pre(,siuned to

have the same period (or integer divisors thereof) as the vortex, we alias the point

at z = 21r to have the same value as that at z = 0. The stretching in the normal

coordinate ensures that the far field boundary condition can Ibe imposed at a suitably

large (but finite) value while still retaining resolution at the wall. The discretized

version of equation (2.1) may be written as

AjiT+j + Bi•, + Cii- 1 = 0, (3.1)

where I7i = ,Pi2, ... / iM where the subscript i denotes the value at yi. In

the system (3.1) the matrices Ai and Ci are diagonal, a fact that is exploited by the

particular block solver written to solve (3.1). To impose the asymptotic condition we

notice that P satisfies
a2P 2 0t5

,9y 2 y - cy

as y -- 00, where we have made use of the fact that the vortex is confined to the

viscous wall layer. This equation has the decaying solution

P = (y + A) e-'y,

where A is a function of a and c but is not relevant here. We choose to impose this

condition at y = y,, by using the Robin condition,

P Oýy = a+y

This outer limit is chosen so that changing it does not affect the calculation. In this

study we choose to allow both odd and even modes, and thus we solve over the whole

period rather than half the range as in Hall & Horseman (1991). This allowed us

to have mixed modes which are necessary in the three-dimensional basic states cases.

The problem was normalized using the same method as in Hall & Horseman (1991)

by imposing the constraint

S= 1 at y = 0 Vz. (3.2)
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We then iterate on the complex phase speed c to drive the complex ,umbedr,

1

to zero, where we use a two-dimensional real secant method. W\hen the svstelii is

renormalized the condition (3.2) is in fact P. = 0, at y = 0.

In general 32 points per period were used in the spanwise coordinate wlhereas te

normal grid was made u1p of 90 points, with an infinity of y, = 50. In general the

same number of points were used for these calculations as were employed in Otto &

Bassom (1993) for the vortex calculations.

0.0020-

0.0015-
6

0.0005-
0"0000 -r i ... t J L ,
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Figure 1. Growth rates aci of the primary and secondary modes
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4. Results and Discussion

We will limit our discussion to the secondary instability of tile nonlinear vortex

state obtained by Denier & Hall (1993); further results concerning the effect of crossfiow

on the secondary modes will be presented in an future paper (see Otto & Denier (1993)

for full details). The details of the solution of the governing equations for the nonlinpar
vortex state can be found in Denier & Hall (1993) and Otto & Bassoni (1993); the
reader is referred to the aforementioned papers for a discussion of the numerical scheme

used to inLegrate the nonlinear vortex equations.

In figure 1 we present the temporal growth rate of the two major .±.odes which were
found. The modes marked 'primary' are conjectured to be projections of thel primary

vortex onto the reduced inviscid equations. The disturbances marked as 'secondary*

are the modes that we are interested in. They have substantially greater growth rates

and thus are likely to be more dangerous. The latter modes are characterized by the

amount of energy present in the second harmonic.

Pressure contours for a=0.16, primory10

S. ............ ....... . ........... ........... ............ . ........... .................... . ......... . .. ..
8t

6 ..... .......... ........ ..................

0i

0 1 2 3 4 5
2

Figure 2a. Iso--pressure contours for the case a - 0.16 (primary).
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10 Pressure contours, ct=0. 162, secondary

2

of
0 1 2 34 5

Figure 2b. Iso-pressure contours for the case a 0. 16 (secondary.).

In figure 2a we show the contours of IPI for the case a = 0.16 for the primary

disturbance, it should be noted that this mode seems to reside iiear the vortex. III

figure 21) we show the contours of pressure for the case a~ = 0.16 for the true secondlary

dlisturb~ance. Notice that this miode has maxima just 'outside' the vortex, (as a~ in-

creases this pheniomena increa~ses in clarity), hII Figure 3a,b) we p~resent the FouriVer

decomposition of the two modes, notice these modes are comprised virtually entirely

of cosine components, and hence. we. do iiot show the sine coefficients. Ill Figure 3a

we, note that the majority is confined to the the fundamental and( the two-d(Iimensional

comp~onent (which is not shown)., however inl figure 31) the mnode labeled the 'secoiidary'

disturbance can be seeni to have a significant, second hiarmionic comp~onent. These re-

suits lend credlence to the )hiysical significance of the 'primiary' and~ 'seconmlary' modes

p~ictured in Figure 2.
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Coefficients of cosine for primrory a-0. 162. n-1.2,3,4

0.20 '"

0.15

0.05,

SSecond hotrronic . Fj.,•Cdo-ntu(
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Figure 3a. Fourier decomposition of the pressure (primary).

Coefficients of cosine for secondory a-0.162, n-I,2,3.4
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* I
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Figure 3b. Fourier decomposition of the pressure (se'ondary).
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By imposing periodicity in the spanwise coordinate we were able to find two

distinct modes, here referred to as the primary and secondary mode but were lunable

to demonstrate the existence of any 'odd' niodes which lie 7r/2 out of- phase to th,

underlying vortex velocity field. However, by removing this requirement and instead

imposing boundary conditions appropriate to such odd (list urbances we are intdeed

able to demonstrate the existence of such modes; the full results of this study will be

presented in a forthcoming paper (see Otto & Denier (1993)).

5. Conclusions

We have shown that flow situations involving a nonlinear vortex are susceptible to

inviscid disturbances with large growth rates. One of the major points that should be

noted from this work is that the most unstable ;econdary modes have significant second

harmonic components, which perhaps should be incorporated in the analytic approach

to this class of problems. A similar phenomena has been observed in the secondary

instability of rotating disk flows by Balachandar. Streett & Malik (1992), the reader

is referred to that paper for further insight into the nature of these disturbances.

It is not clear whether flows which are inflectional in nature in the absence of

the vortex will be stabilized or destabilized by the introduction of a vortex state;

such a question deserves fi'rtler consideration. Finally, it would be an interesting and

significant problem to consider the effe,'t of increasing the ampliltude of the inviscid

wave to determine whether a vortex/wave interaction could ensue.
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